skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pantev, Tony"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper we explore noninvertible symmetries in general (not necessarily rational) SCFTs and their topological B-twists for Calabi-Yau manifolds. We begin with a detailed overview of defects in the topological B model. For trivial reasons, all defects in the topological B model are topological operators, and define (often noninvertible) symmetries of that topological field theory, but only a subset remain topological in the physical (i.e., untwisted) theory. For a generic target space Calabi-Yau X, we discuss geometric realizations of those defects, as simultaneously A- and B-twistable complex Lagrangian and complex coisotropic branes on X ×X, and discuss their fusion products. To be clear, the possible noninvertible symmetries in the B model are more general than can be described with fusion categories. That said, we do describe realizations of some Tambara-Yamagami categories in the B model for an elliptic curve target, and also argue that elliptic curves can not admit Fibonacci or Haagerup structures. We also discuss how decomposition is realized in this language. 
    more » « less
    Free, publicly-accessible full text available October 15, 2026
  2. A<sc>bstract</sc> In this paper, we discuss how gauging one-form symmetries in Chern-Simons theories is implemented in an A-twisted topological open string theory. For example, the contribution from a fixed H/Z bundle on a three-manifold M, arising in a BZ gauging of H Chern-Simons, for Z a finite subgroup of the center of H, is described by an open string worldsheet theory whose bulk is a sigma model with target a Z-gerbe (a bundle of one-form symmetries) over TM, of characteristic class determined by the H/Z bundle. We give a worldsheet picture of the decomposition of one-form-symmetry-gauged Chern-Simons in three dimensions, and we describe how a target-space constraint on bundles arising in the gauged Chern-Simons theory has a natural worldsheet realization. Our proposal provides examples of the expected correspondence between worldsheet global higher-form symmetries, and target-space gauged higher-form symmetries. 
    more » « less
  3. It was recently argued by Nguyen, Tanizaki and Ünsal that two-dimensional pure Yang–Mills theory is equivalent to (decomposes into) a disjoint union of (invertible) quantum field theories, known as universes. In this paper, we compare this decomposition to the Gross–Taylor expansion of two-dimensional pure [Formula: see text] Yang–Mills theory in the large-[Formula: see text] limit as the string field theory of a sigma model. Specifically, we study the Gross–Taylor expansion of individual Nguyen–Tanizaki–Ünsal universes. These differ from the Gross–Taylor expansion of the full Yang–Mills theory in two ways: a restriction to single instanton degrees, and some additional contributions not present in the expansion of the full Yang–Mills theory. We propose to interpret the restriction to single instanton degrees as implying a constraint, namely that the Gross–Taylor string has a global (higher-form) symmetry with Noether current related to the worldsheet instanton number. We compare two-dimensional pure Maxwell theory as a prototype obeying such a constraint, and also discuss in that case an analogue of the Witten effect arising under two-dimensional theta angle rotation. We also propose a geometric interpretation of the additional terms, in the special case of Yang–Mills theories on 2-spheres. In addition, also for the case of theories on 2-spheres, we propose a reinterpretation of the terms in the Gross–Taylor expansion of the Nguyen–Tanizaki–Ünsal universes, replacing sigma models on branched covers by counting disjoint unions of stacky copies of the target Riemann surface, that makes the Nguyen–Tanizaki–Ünsal decomposition into invertible field theories more nearly manifest. As the Gross–Taylor string is a sigma model coupled to worldsheet gravity, we also briefly outline the tangentially related topic of decomposition in two-dimensional theories coupled to gravity. 
    more » « less
  4. In this paper, we discuss decomposition in the context of three-dimensional Chern–Simons theories. Specifically, we argue that a Chern–Simons theory with a gauged noneffectively-acting one-form symmetry is equivalent to a disjoint union of Chern–Simons theories, with discrete theta angles coupling to the image under a Bockstein homomorphism of a canonical degree-two characteristic class. On three-manifolds with boundary, we show that the bulk discrete theta angles (coupling to bundle characteristic classes) are mapped to choices of discrete torsion in boundary orbifolds. We use this to verify that the bulk three-dimensional Chern–Simons decomposition reduces on the boundary to known decompositions of two-dimensional (WZW) orbifolds, providing a strong consistency test of our proposal. 
    more » « less
  5. A bstract In this paper we study three-dimensional orbifolds by 2-groups with a trivially-acting one-form symmetry group BK . These orbifolds have a global two-form symmetry, and so one expects that they decompose into (are equivalent to) a disjoint union of other three-dimensional theories, which we demonstrate. These theories can be interpreted as sigma models on 2-gerbes, whose formal structures reflect properties of the orbifold construction. 
    more » « less